The Anti-Inflammatory and Chemopreventative Effects of Chai Tea [1]
The chemopreventative benefit of a whole foods diet is often attributed to phytochemicals, such as terpenoids and polyphenols, found in fruits, vegetables, and grains.
Abstract
Introduction
Anti-inflammatory/Anticancer Effects in Vitro and in Vivo
Many of the bioactive compounds in spices are found in the essential oils of the plants and are dominated by highly volatile phenolic compounds, including many terpenoids.
Discussion
Conclusion
References
1. Lin W-W, Karin M. A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Invest. 2007;117(5):1175-1183.
2. Kundu JK, Surh Y-J. Breaking the relay in deregulated cellular signal transduction as a rationale for chemoprevention with anti-inflammatory phytochemicals. Mutat Res. 2005;591(1-2):123-146.
3. Chaieb K, Hajlaoui H, Zmantar T, et al. The chemical composition and biological activity of clove essential oil, Eugenia caryophyllata (Syzigium aromaticum L. Myrtaceae): a short review. Phytother Res. 2007;21(6):501-506.
4. Ogata M, Hoshi M, Urano S, Endo T. Antioxidant activity of eugenol and related monomeric and dimeric compounds. Chem Pharm Bull. 2000;48(10):1467-1469.
5. Nagababu E, Rifkind J, Boindala S, Nakka L. Assessment of antioxidant activity of eugenol in vitro and in vivo. Methods Mol Biol. 2010;610:165-180.
6. Chae-Bin Y, Ki-Tae H, Kyu-Seok C, et al. Eugenol isolated from the essential oil of Eugenia caryophyllata induces a reactive oxygen species-mediated apoptosis in HL-60 human promyelocytic leukemia cells. Cancer Lett. 2005;225(1):41-52.
7. Kim SS, Oh OJ, Min H-Y, et al. Eugenol suppresses cyclooxygenase-2 expression in lipopolysaccharide-stimulated mouse macrophage RAW264.7 cells. Life Sci. 2003;73(3):337-348.
8. Okada N, Hirata A, Murakami Y, Shoji M, Sakagami H, Fujisawa S. Induction of cytotoxicity and apoptosis and inhibition of cyclooxygenase-2 gene expression by eugenol-related compounds. Anticancer res. 2005;25(5):3263-3269.
9. Ghosh R, Nadiminty N, Fitzpatrick J, Alworth W, Slaga T, Kumar A. Eugenol causes melanoma growth suppression through inhibition of E2F1 transcriptional activity. J Biol Chem. 2005;280(7):5812-5819.
10. Pisano M, Pagnan G, Loi M, et al. Antiproliferative and pro-apoptotic activity of eugenol-related biphenyls on malignant melanoma cells. Mol Cancer. 2007;6:8.
11. Banerjee S, Panda CK, Das S. Clove (Syzygium aromaticum L.), a potential chemopreventive agent for lung cancer. Carcinogenesis. 2006;27(8):1645-1654.
12. Rodrigues TG, Fernandes A, Sousa JPB, Bastos JK, Sforcin JM. In vitro and in vivo effects of clove on pro-inflammatory cytokines production by macrophages. Nat Prod Res. 2009;23(4):319-326.
13. Raghavenra H, Diwakr BT, Lokesh BR, Naidu KA. Eugenol--The active principle from cloves inhibits 5-lipoxygenase activity and leukotriene-C4 in human PMNL cells. Prostaglandins Leukot Essent Fatty Acids. 2006;74(1):23-27.
14. Grzanna R, Lindmark L, Frondoza C. GingerAn Herbal Medicinal Product with Broad Anti-Inflammatory Actions. J Med Food. 2005;8(2):125-132.
15. Tripathi S, Maier KG, Bruch D, Kittur DS. Effect of 6-gingerol on pro-inflammatory cytokine production and costimulatory molecule expression in murine peritoneal macrophages. J Surg Res. Apr 2007;138(2):209-213.
16. Gaus K, Huang Y, Israel DA, Pendland SL, Adeniyi BA, Mahady GB. Standardized ginger (Zingiber officinale) extract reduces bacterial load and suppresses acute and chronic inflammation in Mongolian gerbils infected with cagA+ Helicobacter pylori. Pharm Biol. 2009;47(1):92-98.
17. Park KK, Chun KS, Lee JM, Lee SS, Surh YJ. Inhibitory effects of [6]-gingerol, a major pungent principle of ginger, on phorbol ester-induced inflammation, epidermal ornithine decarboxylase activity and skin tumor promotion in ICR mice. Cancer Lett. 1998;129(2):139-144.
18. Nigam N, George J, Srivastava S, et al. Induction of apoptosis by [6]-gingerol associated with the modulation of p53 and involvement of mitochondrial signaling pathway in B[a]P-induced mouse skin tumorigenesis. Cancer Chemother Pharmacol. 2010;65(4):687-696.
19. Brown AC, Shah C, Liu J, Pham JTH, Zhang JG, Jadus MR. Ginger’s (Zingiber officinale Roscoe) inhibition of rat colonic adenocarcinoma cells proliferation and angiogenesis in vitro. Phytother Res. 2009;23(5):640-645.
20. Lee HS, Seo EY, Kang NE, Kim WK. [6]-Gingerol inhibits metastasis of MDA-MB-231 human breast cancer cells. J Nutr Biochem. 2008;19(5):313-
319.
21. Kim EC, Min JK, Kim TY, et al. [6]-Gingerol, a pungent ingredient of ginger, inhibits angiogenesis in vitro and in vivo. Biochem Biophys Res Commun. 2005;335(2):300-308.
22. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN. Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol. 2010;127(2):515-520.
23. Rhode J, Fogoros S, Zick S, et al. Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Complement Altern Med. 2007;7(1):44.
24. Kim MK, Chung SW, Kim DH, et al. Modulation of age-related NF-[kappa] B activation by dietary zingerone via MAPK pathway. Exp Gerontol. In Press, Corrected Proof.
25. Chen CY, Liu TZ, Liu YW, et al. 6-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. J Agric Food Chem. 2007;55(3):948-954.
26. Bharat B. Aggarwal ABK, ed Molecular Targets and Therapeutic Uses of Spices: Modern Uses for Ancient Medicine: World Scientific; 2009.
27. Wrba H, el-Mofty MM, Schwaireb MH, Dutter A. Carcinogenicity testing of some constituents of black pepper (Piper nigrum). Exp Toxicol Pathol.
1992;44(2):61-65.
28. Gülçin i. The antioxidant and radical scavenging activities of black pepper (Piper nigrum) seeds. Int J Food Sci Nutr. 2005;56(7):491-499.
29. Pradeep CR, Kuttan G. Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin Exp Metastasis. 2002;19(8):703-708.
30. Duessel S, Heuertz R, Ezekiel U. Growth inhibition of human colon cancer cells by plant compounds. Clin Lab Sci. 2008;21(3):151-157.
31. Shoba G, Joy D, Joseph T, Majeed M, Rajendran R, Srinivas PS. Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta med. 1998;64(4):353-356.
32. Janakiraman K, Manavalan R. Studies on effect of piperine on oral bioavailability of ampicillin and norfloxacin. Afr J Tradit Complement Altern Med.
2008;5(3):257-262.
33. Sengupta A, Ghosh S, Bhattacharjee S. Dietary cardamom inhibits the formation of azoxymethane-induced aberrant crypt foci in mice and reduces COX-2 and iNOS expression in the colon. Asian Pac J Cancer Prev. 2005;6(2):118-122.
34. Bhattacharjee S, Rana T, Sengupta A. Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pac J Cancer Prev. 2007;8(4):578-582.
35. Santos FA, Silva RM, Campos AR, de Araújo RP, Lima Júnior RCP, Rao VSN. 1,8-cineole (eucalyptol), a monoterpene oxide attenuates the colonic damage in rats on acute TNBS-colitis. Food Chem Toxicol. 2004;42(4):579-584.
36. Santos FA, Rao VS. Antiinflammatory and antinociceptive effects of 1,8-cineole a terpenoid oxide present in many plant essential oils. Phytother Res. 2000;14(4):240-244.
37. Juergens U, Engelen T, Racké K, Stöber M, Gillissen A, Vetter H. Inhibitory activity of 1,8-cineol (eucalyptol) on cytokine production in cultured human lymphocytes and monocytes. Pulm Pharmacol Ther. 2004;17(5):281-287.
38. Schoene NW, Kelly MA, Polansky MM, Anderson RA. Water-soluble polymeric polyphenols from cinnamon inhibit proliferation and alter cell cycle distribution patterns of hematologic tumor cell lines. Cancer Lett. 2005;230(1):134-140.
39. Kwon HK, Jeon WK, Hwang JS, et al. Cinnamon extract suppresses tumor progression by modulating angiogenesis and the effector function of CD8+ T cells. Cancer Lett. 2009;278(2):174-182.
40. Ka H, Park HJ, Jung HJ, et al. Cinnamaldehyde induces apoptosis by ROSmediated mitochondrial permeability transition in human promyelocytic
leukemia HL-60 cells. Cancer Lett. 2003;196(2):143-152.
41. Cabello CM, Bair Iii WB, Lamore SD, et al. The cinnamon-derived Michael acceptor cinnamic aldehyde impairs melanoma cell proliferation, invasiveness, and tumor growth. Free Radic Biol Med. 2009;46(2):220-231.
42. Reddy AM, Seo JH, Ryu SY, et al. Cinnamaldehyde and 2-methoxycinnamaldehyde as NF-kappaB inhibitors from Cinnamomum cassia. Planta Med. 2004;70(9):823-827.
43. Imai T, Yasuhara K, Tamura T, et al. Inhibitory effects of cinnamaldehyde on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung carcinogenesis in rasH2 mice. Cancer Lett. 2002;175(1):9-16.
44. Wu S-J, Ng L-T, Lin C-C. Cinnamaldehyde-induced apoptosis in human PLC/PRF/5 cells through activation of the proapoptotic Bcl-2 family proteins and MAPK pathway. Life Sci. 2005;77(8):938-951.
45. Surh YJ. Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer. 2003;3(10):768-780.
46. Aggarwal B, Van Kuiken M, Iyer L, Harikumar K, Sung B. Molecular targets of nutraceuticals derived from dietary spices: potential role in suppression of inflammation and tumorigenesis. Exp Biol Med (Maywood). 2009;234(8):825-
849.
47. Sun CL, Yuan JM, Koh WP, Yu M. Green tea, black tea and breast cancer risk: a meta-analysis of epidemiological studies. Carcinogenesis. 2005;27(7):bgi276-1315.
48. Arts I. A review of the epidemiological evidence on tea, flavonoids, and lung cancer. J Nutr. 2008;138(8):1561S-1566.
49. Zhang X, Albanes D, Beeson WL, et al. Risk of colon cancer and coffee, tea, and sugar-sweetened soft drink intake: pooled analysis of prospective cohort studies. J Natl Cancer Inst. May 7, 2010 2010:djq107.
50. McCann SE, Yeh M, Rodabaugh K, Moysich KB. Higher regular coffee and tea consumption is associated with reduced endometrial cancer risk. Int J Cancer. 2009;124(7):1650-1653.
51. Hirota F, Masami S, Kazue I, Kei N. Green tea: cancer preventive beverage and/ or drug. Cancer Lett. 2002;188(1):9-13.
52. Niphade S, Asad M, Chandrakala G, Toppo E, Deshmukh P. Immunomodulatory activity of Cinnamomum zeylanicum bark. Pharm Biol. 2009;47(12):1168-1173.
53. Sunila ES, Kuttan G. Immunomodulatory and antitumor activity of Piper longum Linn. and piperine. J Ethnopharmacol. 2004;90(2-3):339-346.
54. Majdalawieh A, Carr R. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J Med Food. 2010;13(2):371-381.
55. Srinivasan K. Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr. 2007;47(8):735-748.
56. Kumari MVR. Modulatory influences of clove (Caryophyllus aromaticus, L) on hepatic detoxification systems and bone marrow genotoxicity in male Swiss albino mice. Cancer Lett. 1991;60(1):67-73.
57. Banerjee S, Sharma R, Kale RK, Rao AR. Influence of certain essential oils on carcinogen-metabolizing enzymes and acid-soluble sulfhydryls in mouse liver. Nutr Cancer. 1994;21(3):263 - 269.
58. Hammer KA, Carson CF, Riley TV. Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol. 1999;86(6):985-990.
59. Yin MC, Cheng WS. Inhibition of Aspergillus niger and Aspergillus flavus by some herbs and spices. J Food Prot. 1998:123-125.
60. Farag RS, Daw ZY, Abo-Raya SH. Influence of some spice essential oils on Aspergillus Parasiticus growth and production of aflatoxins in a synthetic medium. J Food Sci. 1989;54(1):74-76.
61. Montes-Belmont R, Carvajal M. Control of Aspergillus flavus in maize with plant essential oils and their components. J Food Prot. 1998:616-619.
62. Ali S, Khan A, Ahmed I, et al. Antimicrobial activities of Eugenol and Cinnamaldehyde against the human gastric pathogen Helicobacter pylori. Ann Clin Microbiol Antimicrob. 2005;4(1):20.
63. Chew E-H, Nagle AA, Zhang Y, et al. Cinnamaldehydes inhibit thioredoxin reductase and induce Nrf2: potential candidates for cancer therapy and chemoprevention. Free Radic Biol Med. 2010;48(1):98-111.