Finasteride's Effect on Prostate Cancer

The 5 alpha-reductase inhibitor reduces risk while DHA may increase risk in certain cases

By Michael Traub, ND, DHANP, FABNO

Printer Friendly PagePrinter Friendly Page

Reference

Brasky TM, Till C, White E, et al. Serum phospholipid fatty acids and prostate cancer risk: results from the Prostate Cancer Prevention Trial. Am J Epidem. 2011. April 24 advance access.

Design

A 7-year, randomized, placebo-controlled trial that tested whether the 5 alpha-reductase inhibitor, finasteride, reduces prostate cancer (PCa) risk. Over the course of the study, men underwent annual prostate-specific antigen (PSA) and digital rectal examination (DRE) testing. Men who had an abnormal DRE or PSA>/= 4.0 ng/mL were recommended for prostate biopsy. At the end of the study, all men who had not been diagnosed with PCa were requested to undergo a prostate biopsy.

A case-control study was nested within the Prostate Cancer Prevention Trial. Serum phospholipid levels were compared from 1,809 men with biopsy-confirmed invasive prostate cancer and 1,809 men (controls) who were disease-free at the end-of-study biopsy. Controls were frequency matched to cases on distributions of age (+/- 5 years), treatment group (finasteride/placebo), and a first-degree relative with PCa, and they were oversampled for nonwhites.

Participants

18,882 men age 55 or older were randomized to receive finasteride or placebo.

Study Medication

Subjects received finasteride 5 mg/day.

Outcome Measures

Serum samples were collected at years 1 and 4 and pooled to reduce intraindividual variability of the phospholipid fatty acid assay. Calculations were made of eicosapentaenoic acid (EPA) + docsahexaenoic acid (DHA) as a measure of total long chain omega02 fatty acids; linoleic + arachidonic acids as a measure of total omega-6 fatty acids; total trans-fatty acids (TFA) 18:1; total TFA 16; and total TFA 18:2.

The primary outcome measure was the distribution of serum phospholipid fatty acids by percent of total among PCa cases and controls, stratified by prostate cancer grade.

Key Findings

Levels of DHA were higher among high-grade cases compared with controls. Levels of TFA 18:1 and 18:2 were significantly lower among high-grade cases compared with controls. There were no other significant differences of the remaining phospholipids between control and cancer groups. EPA was not associated with risk of high-grade PCa, and associations were similar for EPA+DHA to that of DHA alone.

Practice Implications

Epidemiologic, animal model, and in vitro studies indicate that omega-3 fatty acids, lycopene, and selenium are chemopreventive for PCa.1 The findings of this study run counter to what the investigators hypothesized, which was that omega-6 and TFAs would be positively and omega-3 fatty acids inversely associated with PCa risk. Although unexpected, the authors cite several other studies that are consistent with their results, and the possibility exists that there may be an inverse association of fish consumption with late stage or fatal prostate cancer. It is important to keep in mind, however, that it was only DHA, and only high-grade prostate cancer, where an increased risk of PCa risk was found. Replication in more studies is needed before any conclusive recommendations can be made.

A major limitation of this sero-epidemiological study is based on the fact that fatal prostate cancer takes many years from formation until death occurs. The question is whether the fatty acid content of a man’s blood on two days out of the thousands of days over those years is a reliable measure of his average fatty acid status. Another limitation is that the researchers did not take into account the impact of vitamin E, selenium, lycopene, cruciferous vegetables, meat and dairy intake.

EPA and DHA are hypothesized to reduce cancer risk in general through their anti-inflammatory and immunomodulatory properties, and by affected cell permeability, gene expression, and signal transduction. The effects of omega-3s on these pathways in prostate carcinogenesis are not fully understood. There is no known mechanism by which EPA or DHA would be procarcinogenic, nor is there any evidence suggesting anticancer properties of trans-fats.

Genetic and molecular studies of high-grade prostate intraepithelial neoplasia have indicated that loss of heterozygosity is prominent and that certain oncogenes are expressed.2 What causes the expression of these oncogenes? What downregulates their expression?

Androgenic hormones are necessary for prostate growth and development. It is not surprising that polymorphic variants of genes involved in androgen action may affect PCa risk. African Americans, who have higher PCa risks than Asians, have androgen-receptor polymorphisms that result in their increased predisposition. 5-alpha reductase variants also may respond differently to inhibition by finasteride.

The key lifestyle factor in the United States most likely responsible for high PCa incidence is the diet, generally rich in animal fats and meats and poor in fruits and vegetables.

Accumulated epidemiologic evidence implicates the environment as the major contributor to the development of most prostate cancers. PCa incidence has wide geographic variation, with high rates in the US and Western Europe and low rates in Asia. African Americans have very high PCa risks. The geographic variation can be explained best by lifestyle, as Asian immigrants to North America have higher PCa risks. The key lifestyle factor in the United States most likely responsible for high PCa incidence is the diet, generally rich in animal fats and meats and poor in fruits and vegetables. Total fat intake, animal fat intake, and consumption of red meats are associated with increased PCa risk.3 Ingestion of 2-amino-1-methyl-6-phenylimidazopyridine, one of the hererocyclic amine carcinogens that appear in “well-done” red meats, leads to PCa in rats.4 Consumption of dairy products also increases PCa risk.5

Consumption of lycopene, cruciferous vegetables, vitamin E and selenium reduce PCa risk.6,7,8
The role of genetics in identifying individuals at high risk for prostate cancer are in their infancy, but epidemiologic studies support the concept that genetic risk plays a role, and clinical studies support the observation that early prostate cancer in some individuals is highly aggressive, while in the majority it is indolent. Linking these two factors should identify a population of men in whom screening, early detection, and chemoprevention agents can be intensively directed. In the meantime, the take-home message of this study was expressed by the chief author: "Overall, the beneficial effects of eating fish to prevent heart disease outweigh any harm related to prostate cancer risk."

For more research involving integrative oncology, click here.

About the Author

Michael Traub, ND, DHANP, FABNO, completed pre-med studies at the University of California at Irvine. He graduated from National University of Naturopathic Medicine in 1981 and completed a residency there in Family Practice and Homeopathy. In 2006, Traub was honored with the American Association of Naturopathic Physicians (AANP) Physician of the Year Award in recognition for his many years of service, which included serving as AANP president from 2001 to 2003. His father was a dermatologist, and this inspired Traub to undertake extra study in this subject and become the leading expert in dermatology in the naturopathic profession. He has taught dermatology at 5 of the 7 accredited naturopathic medical schools in North America and is the author of Essentials of Dermatologic Diagnosis and Integrative Therapeutics. A fellow of the American Board of Naturopathic Oncology, Traub has been actively engaged in clinical research throughout most of his career and is currently a co-investigator in the Canadian/US Integrative Oncology Study. His most recent major publication, “Impact of Vitamin D3 Dietary Supplement Matrix on Clinical Response,” appears in a 2014 issue of the Journal of Clinical Endocrinology and Metabolism. Traub has served as medical director of Lokahi Health Center in Kailua Kona, Hawaii for the past 34 years.

References

1. Nelson WG, DeWeese TL, DeMarzo AM. The diet, prostate inflammation, and the development of prostate cancer. Cancer Metastasis Rev 2002;21:3-16

2. Alcaraz A, Barranco MA, Corral JM, Et al. High-grade prostate intraepithelial neoplasia shares cytogenetic alterations with invasive prostate cancer. Prostate 2001;47:29-35

3. Giovannucci E, Rimm EB, Colditz GA, et al: A prospective study of dietary fat and risk of prostate cancer. J Natl Cancer Insti 1993;85:1571-1579

4. Stuart GR, Holcroft J, de Boer JG, Glickman BW. Prostate mutations in rats induced by the suspected human carcinogen 2-amino-1-methyl-6-phenylimidazo [4,5-b]pyridine. Cancer Res 2000;60:266-268

5. Chan JM, Stampfer MJ, Ma J, Gann PH, Gaziano JM, Giovannucci EI. Dairy products, calcium and prostate cancer risk in the Physicians’ Health Study. Am J Clin Nutr 2001;74:549-554

6. Chen L, Stacewicz-Spuntzakis M, Duncan C, et al. Oxidative DNA damage in prostate cancer patients consuming tomato-sauce-based entrees as a whole-food intervention. J Natl Cancer Inst 2001;93:1872-1879

7. Gao X, Dinkova-Kostova AT, Talalay P. Powerful and prolonged protection of human retinal pigment epithelia cells, keratinocytes, and mouse leukemia cells against oxidative damage: the indirect antioxidant effects of sulforaphane. Proc Natl Acad Sci USA 2001;98:15221-15226

8. Hoque A, Albanes D, Lippman SM, Et al. Molecular epidemiologic studies within the Selenium and Vitamin E Cancer Prevention Trial (SELECT). Cancer Causes Control 2001;12:627-633